Dijkstras algoritm i Python

I den här handledningen kommer jag att implementera Dijkstras algoritm för att hitta den kortaste sökvägen i ett rutnät och i en graf. Dijkstras algoritm skapades av Edsger W. Dijkstra, en programmerare och datavetare från Nederländerna. Dijkstras utför en enhetlig kostnadssökning eftersom den expanderar noder i ordningsföljd utifrån kostnaden från rotnoden.

Dijkstras är en informerad algoritm i sökningar eftersom den använder en heuristisk (kostnad hittills), den startar vid en initial startnod och uppdaterar varje grannod med kostnaden hittills. Algoritmen väljer den granne som har lägst kostnad och fortsätter att expandera noder tills den når målnoden, detta kan implementeras genom att använda en prioriteringskö eller genom att sortera listan med öppna noder i stigande ordning. Algoritmen gynnar noder som ligger nära utgångspunkten.

Dijkstras algoritm är komplett och den hittar den optimala lösningen, det kan ta lång tid och konsumera mycket minne i ett stort sökutrymme. Tidskomplexiteten är O(n) i ett rutnät och O(b^(c/m)) i en graf/träd med en förgreningsfaktor (b), en optimal kostnad (c) och en minimikostnad (m). Förgreningsfaktorn är det genomsnittliga antalet grannnoder som kan utökas från varje nod, den optimala kostnaden är kostnaden för den optimala lösningen och minimikostnaden är den lägsta kostnaden för en nod.

Rutnätsproblem (labyrint)

Jag har skapat en enkel labyrint (ladda ner) med väggar, en startpunkt (@) och en målpunkt ($). Dijkstras algoritm används för att hitta den kortaste vägen från startnoden till en målnod genom att använda avståndet till startnoden (g) som heuristik.

# This class represents a node
class Node:

    # Initialize the class
    def __init__(self, position:(), parent:()):
        self.position = position
        self.parent = parent
        self.g = 0 # Distance to start node
        self.h = 0 # Distance to goal node
        self.f = 0 # Total cost

    # Compare nodes
    def __eq__(self, other):
        return self.position == other.position

    # Sort nodes
    def __lt__(self, other):
         return self.f < other.f

    # Print node
    def __repr__(self):
        return ('({0},{1})'.format(self.position, self.f))

# Draw a grid
def draw_grid(map, width, height, spacing=2, **kwargs):
    for y in range(height):
        for x in range(width):
            print('%%-%ds' % spacing % draw_tile(map, (x, y), kwargs), end='')
        print()

# Draw a tile
def draw_tile(map, position, kwargs):
    
    # Get the map value
    value = map.get(position)

    # Check if we should print the path
    if 'path' in kwargs and position in kwargs['path']: value = '+'

    # Check if we should print start point
    if 'start' in kwargs and position == kwargs['start']: value = '@'

    # Check if we should print the goal point
    if 'goal' in kwargs and position == kwargs['goal']: value = '$'

    # Return a tile value
    return value 

# Dijkstra search
def dijkstra_search(map, start, end):
    
    # Create lists for open nodes and closed nodes
    open = []
    closed = []

    # Create a start node and an goal node
    start_node = Node(start, None)
    goal_node = Node(end, None)

    # Add the start node
    open.append(start_node)
    
    # Loop until the open list is empty
    while len(open) > 0:

        # Sort the open list to get the node with the lowest cost first
        open.sort()

        # Get the node with the lowest cost
        current_node = open.pop(0)

        # Add the current node to the closed list
        closed.append(current_node)
        
        # Check if we have reached the goal, return the path
        if current_node == goal_node:
            path = []
            while current_node != start_node:
                path.append(current_node.position)
                current_node = current_node.parent
            #path.append(start) 
            # Return reversed path
            return path[::-1]

        # Unzip the current node position
        (x, y) = current_node.position

        # Get neighbors
        neighbors = [(x-1, y), (x+1, y), (x, y-1), (x, y+1)]

        # Loop neighbors
        for next in neighbors:

            # Get value from map
            map_value = map.get(next)

            # Check if the node is a wall
            if(map_value == '#'):
                continue

            # Create a neighbor node
            neighbor = Node(next, current_node)

            # Check if the neighbor is in the closed list
            if(neighbor in closed):
                continue

            # Generate heuristics (Manhattan distance)
            neighbor.g = abs(neighbor.position[0] - start_node.position[0]) + abs(neighbor.position[1] - start_node.position[1])
            neighbor.h = 0
            neighbor.f = neighbor.g

            # Check if neighbor is in open list and if it has a lower f value
            for node in open:
                if (neighbor == node and neighbor.f > node.f):
                    continue

             # Everything is green, add neighbor to open list
            open.append(neighbor)

    # Return None, no path is found
    return None

# The main entry point for this module
def main():

    # Get a map (grid)
    map = {}
    chars = ['c']
    start = None
    end = None
    width = 0
    height = 0

    # Open a file
    fp = open('annytab\\ai_search_algorithms\\data\\maze.in', 'r')
    
    # Loop until there is no more lines
    while len(chars) > 0:

        # Get chars in a line
        chars = [str(i) for i in fp.readline().strip()]

        # Calculate the width
        width = len(chars) if width == 0 else width

        # Add chars to map
        for x in range(len(chars)):
            map[(x, height)] = chars[x]
            if(chars[x] == '@'):
                start = (x, height)
            elif(chars[x] == '$'):
                end = (x, height)
        
        # Increase the height of the map
        if(len(chars) > 0):
            height += 1

    # Close the file pointer
    fp.close()

    # Find the closest path from start(@) to end($)
    path = dijkstra_search(map, start, end)
    print()
    print(path)
    print()
    draw_grid(map, width, height, spacing=1, path=path, start=start, goal=end)
    print()
    print('Steps to goal: {0}'.format(len(path)))
    print()

# Tell python to run main method
if __name__ == "__main__": main()
#################################################################################
#.#...#....$....#...................#...#.........#.......#.............#.......#
#.#.#.#.###+###.#########.#########.#.#####.#####.#####.#.#.#######.###.#.#####.#
#...#.....#+++#.#.........#.#.....#.#...#...#...#.......#.#.#.......#.#.#.#...#.#
#############+#.#.#########.#.###.#.###.#.###.#.#.#######.###.#######.#.#.#.#.#.#
#+++++++++++#+#...#.#.....#...#...#...#.#.#.#.#...#...#.......#.......#.#.#.#.#.#
#+#########+#+#####.#.#.#.#.###.#####.#.#.#.#.#####.#.#########.###.###.###.#.#.#
#+#........+#+++#...#.#.#.#...#.....#.#.#.#...#.#...#.......#.....#.#...#...#...#
#+#########+#.#+###.#.#.#####.###.#.#.#.#.#.###.#.#########.#####.#.#.###.#####.#
#+#+++++++#+#.#+++#...#.#.....#.#.#.#...#.#.....#.#.....#.#...#...#.......#...#.#
#+#+#####+#+#.###+#####.#.#####.#.#.###.#.#######.###.#.#.###.#.###########.#.#.#
#+++#+++#+#+#...#+++++#.#.......#.#.#...#.....#...#...#.....#.#.#...#...#...#...#
#####+#+#+#+#########+#.#######.#.###.#######.#.###.#########.###.#.#.#.#.#######
#+++++#+++#+#+++++++++#.......#.#...#.#.#.....#.#.....#.......#...#.#.#.#.#.....#
#+#########+#+#########.###.###.###.#.#.#.###.#.#.###.#.#######.###.#.###.#.###.#
#+++#.#+++++#+++#.....#.#.#...#.#.#.....#...#.#.#...#.#...#...#...#.#.#...#...#.#
###+#.#+#####.#+#.#.###.#.###.#.#.#####.###.###.#####.###.#.#.#.###.#.#.#####.#.#
#+++#+++#.....#+#.#.#...#...#.....#...#.#...#...........#.#.#...#...#.......#.#.#
#+###+#########+#.#.#.###.#.#####.#.#.###.###.###########.#.#####.#########.###.#
#+#..+++++++++++#.#.......#.#...#.#.#...#.#...#.#.......#.......#.#...#.....#...#
#+#.#############.#########.#.#.###.###.#.#.###.#.#####.#.#######.#.#.#.#####.#.#
#+#.#+++++++++++#.#.#.#.....#.#.....#...#.#.....#...#.#.#.#.#...#.#.#.#.#.....#.#
#+###+#########+#.#.#.#######.#######.###.#####.###.#.#.#.#.###.#.#.#.#.#####.#.#
#+++++#+++#+++++#...#.........#.....#...#.....#...#...#.#.....#.#...#.#.#.....#.#
#.#####+#+#+#######.###########.#######.#.#######.###.#.###.###.#####.#.#.#####.#
#.....#+#+#+++#...#.#+++++++#.........#.#...#.......#.#.#...#...#.....#.#.#...#.#
#######+#+###+#.###.#+#####+#.#####.###.#.#.#.#######.#.#####.###.#####.#.###.#.#
#+++++++#+#+++#.....#+#...#+#...#.#.....#.#.#.#.#.....#...#...#...#.....#...#.#.#
#+#######+#+#.#####.#+###.#+###.#.#######.#.#.#.#.#######.#.###.#.###.#####.#.#.#
#+#.#+++++#+#.#+++#.#+++#.#+++#...#.#...#.#...#.#.....#.#...#...#...#.......#...#
#+#.#+#####+#.#+#+#####+#.###+###.#.#.#.#.#####.#####.#.#####.#####.#########.###
#+#..+#..+++#.#+#+#+++#+++#.#+#...#...#.#.#...#.....#...#.#...#...#.....#...#.#.#
#+###+###+#.###+#+#+#+###+#.#+#.#######.#.#.#.#####.###.#.#.###.#.#####.###.#.#.#
#+++#+++#+#.#+++#+#+#+++#+#.#+#.#.......#...#.........#.#...#...#.#...#...#.#...#
#.#+###+#+#.#+###+#+###+#+#.#+#.###.###.###########.###.#.###.###.###.###.#.###.#
#.#+++#+#+#.#+++#+++#+++#+#.#+#.....#...#...#.....#.#...#.....#.....#.#...#...#.#
#.###+#+#+#####+#####+#.#+#.#+#######.###.#.#####.#.#.#############.#.#.###.#.#.#
#...#+#+++#+++#+++++#+#.#+#.#+#+++#...#.#.#.......#.#.#...#...#...#...#.#.#.#...#
###.#+#####+#+#####+#+###+#.#+#+#+#.###.#.#########.#.#.#.#.#.#.#.#####.#.#.#####
#...#+++++++#+++++++#+++++..#+++#+++++++@...........#...#...#...#.......#.......#
#################################################################################

Steps to goal: 339

Grafproblem

Problemformuleringen är att hitta den kortaste vägen från en avgångsstad till en destinationsstad, en karta har använts för att skapa förbindelser mellan städer i grafen. Dijkstras algoritm använder en grafklass, en nodklass och avståndet till avgångsstaden (start) som heuristik för att vägleda sökningen.

# This class represent a graph
class Graph:

    # Initialize the class
    def __init__(self, graph_dict=None, directed=True):
        self.graph_dict = graph_dict or {}
        self.directed = directed
        if not directed:
            self.make_undirected()

    # Create an undirected graph by adding symmetric edges
    def make_undirected(self):
        for a in list(self.graph_dict.keys()):
            for (b, dist) in self.graph_dict[a].items():
                self.graph_dict.setdefault(b, {})[a] = dist

    # Add a link from A and B of given distance, and also add the inverse link if the graph is undirected
    def connect(self, A, B, distance=1):
        self.graph_dict.setdefault(A, {})[B] = distance
        if not self.directed:
            self.graph_dict.setdefault(B, {})[A] = distance

    # Get neighbors or a neighbor
    def get(self, a, b=None):
        links = self.graph_dict.setdefault(a, {})
        if b is None:
            return links
        else:
            return links.get(b)

    # Return a list of nodes in the graph
    def nodes(self):
        s1 = set([k for k in self.graph_dict.keys()])
        s2 = set([k2 for v in self.graph_dict.values() for k2, v2 in v.items()])
        nodes = s1.union(s2)
        return list(nodes)

# This class represent a node
class Node:

    # Initialize the class
    def __init__(self, name:str, parent:str):
        self.name = name
        self.parent = parent
        self.g = 0 # Distance to start node
        self.h = 0 # Distance to goal node
        self.f = 0 # Total cost

    # Compare nodes
    def __eq__(self, other):
        return self.name == other.name

    # Sort nodes
    def __lt__(self, other):
         return self.f < other.f

    # Print node
    def __repr__(self):
        return ('({0},{1})'.format(self.position, self.f))

# Dijkstra search
def dijkstra_search(graph, start, end):
    
    # Create lists for open nodes and closed nodes
    open = []
    closed = []

    # Create a start node and an goal node
    start_node = Node(start, None)
    goal_node = Node(end, None)

    # Add the start node
    open.append(start_node)
    
    # Loop until the open list is empty
    while len(open) > 0:

        # Sort the open list to get the node with the lowest cost first
        open.sort()

        # Get the node with the lowest cost
        current_node = open.pop(0)

        # Add the current node to the closed list
        closed.append(current_node)
        
        # Check if we have reached the goal, return the path
        if current_node == goal_node:
            path = []
            while current_node != start_node:
                path.append(current_node.name + ': ' + str(current_node.g))
                current_node = current_node.parent
            path.append(start_node.name + ': ' + str(start_node.g))
            # Return reversed path
            return path[::-1]

        # Get neighbours
        neighbors = graph.get(current_node.name)

        # Loop neighbors
        for key, value in neighbors.items():

            # Create a neighbor node
            neighbor = Node(key, current_node)

            # Check if the neighbor is in the closed list
            if(neighbor in closed):
                continue

            # Calculate cost so far
            neighbor.g = current_node.g + graph.get(current_node.name, neighbor.name)
            neighbor.h = 0
            neighbor.f = neighbor.g

            # Check if neighbor is in open list and if it has a lower f value
            for node in open:
                if (neighbor == node and neighbor.f > node.f):
                    continue

            # Everything is green, add neighbor to open list
            open.append(neighbor)

    # Return None, no path is found
    return None

# The main entry point for this module
def main():

    # Create a graph
    graph = Graph()

    # Create graph connections (Actual distance)
    graph.connect('Frankfurt', 'Wurzburg', 111)
    graph.connect('Frankfurt', 'Mannheim', 85)
    graph.connect('Wurzburg', 'Nurnberg', 104)
    graph.connect('Wurzburg', 'Stuttgart', 140)
    graph.connect('Wurzburg', 'Ulm', 183)
    graph.connect('Mannheim', 'Nurnberg', 230)
    graph.connect('Mannheim', 'Karlsruhe', 67)
    graph.connect('Karlsruhe', 'Basel', 191)
    graph.connect('Karlsruhe', 'Stuttgart', 64)
    graph.connect('Nurnberg', 'Ulm', 171)
    graph.connect('Nurnberg', 'Munchen', 170)
    graph.connect('Nurnberg', 'Passau', 220)
    graph.connect('Stuttgart', 'Ulm', 107)
    graph.connect('Basel', 'Bern', 91)
    graph.connect('Basel', 'Zurich', 85)
    graph.connect('Bern', 'Zurich', 120)
    graph.connect('Zurich', 'Memmingen', 184)
    graph.connect('Memmingen', 'Ulm', 55)
    graph.connect('Memmingen', 'Munchen', 115)
    graph.connect('Munchen', 'Ulm', 123)
    graph.connect('Munchen', 'Passau', 189)
    graph.connect('Munchen', 'Rosenheim', 59)
    graph.connect('Rosenheim', 'Salzburg', 81)
    graph.connect('Passau', 'Linz', 102)
    graph.connect('Salzburg', 'Linz', 126)

    # Make graph undirected, create symmetric connections
    graph.make_undirected()

    # Run search algorithm
    path = dijkstra_search(graph, 'Frankfurt', 'Ulm')
    print(path)
    print()

# Tell python to run main method
if __name__ == "__main__": main()
['Frankfurt: 0', 'Wurzburg: 111', 'Ulm: 294']
Etiketter:

Lämna ett svar

E-postadressen publiceras inte. Obligatoriska fält är märkta *